
I- \ /~.&@-&>\ 
I 

~ 

' N A S A  T E C H N I C A L  N A S A  TM X-2664 
M E M O R A N D U M  

-z 
7 

=E 

Y 

x 

+ 
4 
c/I 
4 z 



I. Report No. 2. Government Accession No. 

NASA TM X-2664 
1. Title and Subtitle 

LIFE PREDICTION OF TURBINE COMPONENTS: ON-GOING 
STUDIES AT THE NASA LEWIS RESEARCH CENTER 

3. Recipient's Catalog No. 

5. Report Date 
January 1973 

6. Performing Organization Code 

7. Author(s) 

0 

6. Abstract 

An overview is presented of the many studies a t  NASA-Lewis that form the turbine component 
life prediction program. This program has three phases: (1) development of life prediction 
methods for  major failure modes through materials studies, (2) evaluation and improvement 
of these methods through a variety of burner  r ig  studies on simulated components, and (3) ap- 
plication of a unified life prediction method to prototype turbine components in research en- 
gines and advanced rigs.  These three phases form a cooperative, interdisciplinary program. 
A bibliography of Lewis publications on fatigue, oxidation and coatings, and turbine engine 
alloys is included. 

8. Performing Organization Report No. 

David A. Spera and Salvatore J. Grisaffe 

9. Performing Organization Name and Address 

Lewis Research Center 
National Aeronautics and Space Administration 
Cleveland, Ohio 44135 

2. Sponsoring Agency Name and Address 

National Aeronautics and Space Administration 
Washington, D. C. 20546 

E-7158 
10. Work Unit No. 

501-21 
11. Contract or Grant No. 

13. Type of Report and Period Covered 

Technical Memorandum 
14. Sponsoring Agency Code 

17. Key Words (Suggested by Author(s1 I 
Life prediction Oxidation 
Fatigue Turbine components 
Creep Gas turbine engines 

18. Distribution Statement 

Unclassified - unlimited 

19. Security Classif. (of this report) 20. Security Classif. (of this pagel 21. NO. of Pages 

Unclassified Unclassified 7 0 
22. Price' 

$3.00 



LIFE PREDICTION OF TURBINE COMPONENTS: ON-GOING STUDIES 

Computer codes a r e  now being developed that consider fatigue, creep, and oxidation 

AT THE NASA LEWIS RESEARCH CENTER 

by David A. Spera and Salvatore J. Grisaffe 

Lewis Research Center 

SUMMARY 



I NTR OD U CTI ON 

The Lewis Research Center is the principal NASA laboratory for research and de- 
velopment of aerospace propulsion systems. A major goal of Lewis is to advance the 
technology of aircraft  gas  turbine engines, from component details to complete systems. 
One highly complex area of special importance is the prediction and improvement of the 
life of turbine blades and vanes. The purpose of this report  is to present an overview of 
the many studies a t  Lewis that together form the turbine component life-prediction 
program. 

The program has three phases: (1) development of life prediction methods fo r  
major potential failure modes through a wide range of materials studies, (2) evaluation 
and improvement of these methods through a variety of burner r ig  studies on simulated 
components, and (3) application of a unified life prediction method to prototype turbine 
components in research engines and advanced rigs. These three phases form a cooper- 
ative, interdisciplinary program involving mission analysis, fluid and solid mechanics, 
thermodynamics, metallurgy, and statistics. 

Predicting the lives of turbine components is complicated by the complex geometry 
of the par t s  themselves. Typical air-cooled components are shown in figure 1. These 
are small, intricate, thin-walled s t ructures  acting both as highly loaded airfoils and 
high-flux heat exchangers. They must perform this dual role at extreme metal temper- 
atures, in an oxidizing atmosphere, and, in  the case of blades, while moving a t  speeds 
approaching sonic velocities. Moreover, they are routinely subjected to vibration and 
to severe transient loading during frequent s t a r t s  and stops. Finally, a failure in one 
of these cri t ical  components can quickly escalate to loss of performance and, potentially, 
to the loss of an engine. 

methods (refs. 1 and 2), that make the modern cooled turbine airfoil a costly as well as 
a critical component. Thus, the ability to  predict and eventually improve the life of a 
turbine blade or vane can result in higher performance, lower engine and maintenance 
costs, and increased safety. 

In general, the scope of this review wil l  be limited to those studies a t  Lewis that 
include both turbine components and life prediction. A number of other Lewis publi- 
cations provide comprehensive reviews of related areas: references 1 to 3 review 
efforts on aircraft  gas turbines; references 4 to 8 review efforts to understand and 
develop better turbine materials;  and references 9 to 11 deal with the a reas  of 
s t r e s s  analysis and fatigue. 

A bibliography of related NASA-Lewis publications is included in this report. It 
includes sections on fatigue, on oxidation and coatings, and on turbine engine alloys. 

I 

I 

Figure 2 shows the complex internal geometries required for advanced cooling 
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TURBINE COMPONENT LIFE-PREDICTION PROGRAM 

Potential Fai lure Modes 

The major potential failure modes f o r  turbine components are presented schemat- 
ically in figure 3. Stresses  high enough to produce premature fracture o r  buckling are 
generally avoided by a preliminary elastic stress analysis. The long-term failure 
mechanisms are those that dictate life. At temperatures below approximately 800' C 
mechanical fatigue is often the dominant failure mode. The engine environment usually 
exer ts  only a second-order influence in this temperature range. At the higher temper- 
atures, above about 1000° C, creep, oxidation, and thermal fatigue (acting alone o r  
together) usually cause failure. Environmental effects a r e  dominant in  th i s  temperature 
range. In the intermediate temperature range, 800Oto 1000° C, any of the several  

terial, and the engine cycle. This temperature range is particularly cri t ical  for  sul- 
fidation, a failure mode of importance for  marine gas turbines. 

Protective coatings can al ter  the mode of failure and extend the life of the compo- 
nent until the coating itself is depleted by oxidation or cracked by fatigue. 
mechanical fatigue and creep form an upper bound on life, for a given application. Al- 

l though figure 3 is merely a schematic representation of possible interactions of the 
major failure modes, it does illustrate that several  failure mechanisms combine to 
produce a region of available life. One of the goals of life-prediction methods is to de- 
fine this region. 

I failure modes shown in the figure can be dominant, depending on the structure, the ma- 

Generally, 

Phases of t he  Life-Prediction Program 

The three major phases of the Lewis life-prediction program for turbine compo- 
nents are illustrated in figure 4. These phases a r e  in various stages of development, 
as wil l  be discussed in subsequent sections of this report. The first phase includes ma- 
ter ia ls  tes t s  such as uniaxial tensile, creep, and mechanical fatigue. These tes t s  a r e  
conducted on very simple specimens and are supplemented by static and cyclic furnace 
oxidation studies. Basic methods for predicting life have been developed from the re- 
sulting data. Thermal-fatigue tes t s  on relatively simple wedge specimens in fluidized 
beds a r e  used to evaluate these methods. 

In the second phase of the program, evaluation of life-prediction methods continues 
in burner r ig  tes t s  directed toward a better simulation of the hot gas  environment of an 
engine. Wedge specimens a r e  used to study cyclic oxidation behavior and to evaluate 
methods for predicting coating life. Airfoil specimens a r e  used to evaluate thermal- 
fatigue life predictions in  a simulated engine environment for complex geometries. As a 

' 
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result  of burner rig tests, the life-prediction techniques are expanded or modified to  
integrate additional factors  such as high gas  velocity, rapid temperature transients, 
s t r e s s  concentrations, combustion products, etc. 

The third and final phase of the program is the prediction of lives for prototype 
components tested in engines and rigs. This provides the best  evaluation of life- 
prediction methods and the first step in developing improved turbine components. 

PHASE I: DEVELOPMENT OF PREDICTION METHODS 

THROUGH MATERIALS STUDIES 

The purpose of the first phase of the general program is to develop a prediction 
method for  each of the potential failure modes in its "pure" form and then to integrate 
these methods into a unified life-prediction technique. Each failure mode requires de- 
tailed study to understand the damage mechanisms and to describe the damage process  
quantitatively. 

Materials studies a r e  usually conducted on small  samples (coated and uncoated) 
under carefully controlled laboratory conditions. These conditions a r e  seldom as severe 
as engine service unless temperatures, s t resses ,  or environments a r e  deliberately al- 
tered to accelerate damage. The assumption is made that the engine environment may 
increase damage rates,  but the damage mechanisms remain the same. Thus, life- 
prediction methods developed from mater ia ls  studies must provide for the changing of 
rates to suit engine service. 

Quantitative description is the basis  of any life-prediction method. 

Basic Mechanical  Tests and Data Analysis 

Test procedures for obtaining conventional tensile, creep-rupture, and mechanical- 
fatigue data a r e  widely used and well documented. These tes t s  a r e  usually isothermal, 
and they provide the basic strength and deformation information that characterize the 
material. Methods have been developed for  interpolation and extrapolation of these data. 
For  example, time-temperature parameters  for  the analysis of creep-rupture data have 
been studied extensively at Lewis (refs. 12 to 14). Methods are also required for ap- 
plying isothermal tes t  data to cycles that a r e  not isothermal. Two such methods now 
being used to predict thermal-fatigue life a r e  the Method of Universal Slopes (ref. 15) 
for mechanical fatigue and the Method of Life Fractions for creep (refs.  14 and 16). 

Method of Universal Slopes. - This is an empirical equation relating cyclic life to 
strain range, using tensile ductility, ultimate tensile strength, and Young's modulus. It 
is used to predict failure in the pure fatigue mode. Temperature is assumed to affect 
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fatigue life indirectly, through its effect on tensile properties. Time effects such as 
creep and oxidation a r e  assumed to be  absent. For  nonisothermal cycles, the temper- ' ature in the cycle that gives the shortest  calculated life is used. 

Method of Life Fractions. - This is a rule for  calculating creep-rupture life under 
cyclic conditions of temperature and s t ress .  The cycle is divided into small  time inter- 
vals, each having a nominal temperature and stress,  and thus a nominal rupture time. 
The fraction of life consumed in each interval is then assumed to  be the ratio of the in- 
terval time to the rupture time. The life fractions are  summed for a complete cycle to 
obtain the damage per  cycle. The reciprocal of this sum is assumed to be the cyclic 
life in the pure creep mode. 

are being studied at Lewis. One of the most promising of these is Strainrange Partition- 
ing (refs. 17 and 18). With this method, any inelastic s t ra in  cycle, no matter how com- 
plex, can be subdivided into four basic components. These components are unique com- 
binations of plastic and creep strains. They are related independently to cyclic life by 
equations that are generalizations of the well-known Manson-Coffin equation. A linear 
life fraction rule is used to sum the damages resulting from each of the strain range 
components. Failure is assumed to occur when the summation of life fractions equals 
unity. This method has the potential of guiding the generation of fatigue data (ref. 17), 
improving the understanding of fatigue mechanisms, and interpreting the effects of f re -  
quency, hold time, temperature, and environment. 

I Other methods for characterizing the  resistance of materials to low-cycle fatigue 

' 

Oxidation Testing in Furnaces 

The vast  majority of oxidation studies have been conducted under isothermal, non- 
cyclic conditions so as to continuously measure weight gain of oxygen per unit area of the 
specimen. These data were then used to  calculate an oxygen pickup or  scale growth rate 
constant, a number long used as an index of oxidation resistance. Recently, a few pro- 
grams have explored the influence of thermal cycling on the scaling and spalling behavior 
of turbine alloys (refs. 20 and 21). Such studies have shown that thermal cycling accel- 
e ra tes  surface attack, promotes spalling of oxide scales, and eventually resul ts  in 
weight loss  ra ther  than gain in the specimen. Of special importance is the observation 
that protective coatings are often consumed during thermal cycling, when isothermal 
tests showed little or  no consumption. For  these reasons, Lewis has adopted the use of 
cyclic furnace testing of coated turbine alloys as the first step in  establishing their oxi- 
dation resistance and coating behavior. 

A typical cyclic oxidation furnace facility is shown in figure 5. Specimens a r e  sus- 
pended from platinum wires to minimize the influence of the support material  on oxide 
scale composition. Each specimen is in its own tube to eliminate c ros s  contamination 
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f rom oxide vapors. The transfer mechanism lifts the specimens out of the furnace for 
slow cooling to room temperature. A small cup is moved into place beneath each speci- 
men s o  that the oxide spa11 can be collected for analysis. Cycles a r e  usually 1 hour 
long, to approximate an average flight cycle. Furnaces of this type are operated around 
the clock, unattended, with periodic interruptions for  weighing of specimens and col- 
lecting of spalled oxide. 

Cyclic oxidation tes t s  indicate that coating failures a r e  usually preceded by the 
thinning and subsequent breaking up of a key protective layer or phase (refs. 22 and 23). 
These observations are described in more detail in the appendix and have led to the con- 
cept of "layer break-up" for predicting coating life. This concept is now in its ear ly  
stages of development. Hopefully, it wil l  provide a model for the calculation of the 
pure coating life from its composition and the cyclic environment. 

Thermal-Fatigue Testing in Fluidized Beds 

The thermal-fatigue resistances of various alloys and coatings are being determined 
under contract at the Illinois Institute of Technology Research Institute, using the 
fluidized-bed technique (refs. 24 and 25). The objectives of this continuing program 
a r e  (1) to determine the comparative resistances of the latest alloys, coatings, and 
claddings of interest for turbines, and (2) to  provide carefully controlled data for de- 
velopment and evaluation of life-prediction methods. 

wedge specimens. Two beds a r e  used, one each for heating and cooling. A bed consists 
of a retort filled with fine sand through which air is pumped. The flow of air causes the 
sand particles to develop a churning, circulating action. The large mass  of the beds 
and their mixing action promote uniform, high heat-transf e r  rates,  making them ideal 
for thermal-fatigue studies. 
National Gas Turbine Establishment in England in 1958. Since that time the technique 
has become widely accepted for evaluating both mater ia ls  and components. 

The most crack resistant alloys were either directionally solidified or coated or both. 
Tes ts  continue on the best of these alloys plus 20 new alloys and conditions, bringing to 
38 the total number of systems being evaluated. 

fatigue lives. The method of life calculation is explained briefly in the next section. 
The alloy is B 1900, with and without an aluminide coating. Tests  of this type have 
verified the life-calculation method for simple thermal-fatigue tes t s  of the fluidized- 
bed type. 

Figure 6(a) is a schematic view of the facility and of a typical group of double- 

Fluidized beds were first used for this purpose a t  the 

Typical data on some turbine mater ia ls  are shown in the bar  chart in figure 6(b). 

Figure 6(c) shows a typical comparison between calculated and observed thermal- 
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Toward a Uni f ied Life-Prediction Method 

The materials testing phase of the program has led to the conclusion that a life- 
prediction method for turbine components must unify fatigue, creep, and oxidation. The 
first two of these failure modes have already been combined in a computer code for pre-  
dicting thermal-fatigue life. Figure 7 shows a schematic diagram of this code which is 
called THERMF1. Calculations start with a thermal and s t r e s s  analysis for both tran- 
sient and steady-state conditions, including plasticity and creep. This is often the most 
difficult step in the life analysis of a complex component. On the basis  of this analysis, 
two lives a r e  calculated: (1) a fatigue life, using the Method of Universal Slopes and the 
tensile properties of the material, and (2) a cyclic creep life, using the Method of Life 
Fractions and the creep-rupture properties of the material. These two methods were 
described briefly at the beginning of this section. The fatigue and creep lives a r e  then 
combined to give the thermal-fatigue life, assuming a simple linear interaction (refs. 
26 and 27). 

Figure 8 shows the progress to date in using THERMFl to calculate the thermal- 
fatigue lives of coated and uncoated specimens tested in  fatigue machines, fluidized beds, 
and burner r igs  (ref. 28). Calculated and observed lives agree within a factor of two 
for 114 of the 125 tes ts  examined thus far. The error  is distributed approximately in a 
log normal fashion and reflects both the inaccuracies in the calculations and the experi- 
mental e r ror .  Twenty of these tes t s  were on simulated turbine blades tested in a 
Mach 1 burner rig, which wi l l  be described later in the report. Distribution of e r r o r  
in these tes ts  is similar to that in figure 8 for all of the tests. 

Only a few of the tes ts  analyzed thus far have included long hold t imes at  elevated 
temperature. 
mode directly. However, life analysis of actual turbine components will require that 
THERMFl be expanded to include this mode, particularly for coatings. When th is  is 
done, a unified method wil l  be available for predicting the lives of prototype components 
under service conditions. 

l 

I 

, 

i 

For th i s  reason, it has not been necessary to include the oxidation failure 

PHASE 11: EVALUATION OF PREDICTION METHODS THROUGH 

BURNER RIG STUDIES 

Open-Jet Burner  Rigs 

Open-jet burner rigs, which burn jet fuel or natural gas, a r e  the simplest facilities 
that can provide the combustion environment, gas  velocities, and thermal gradients 
similar to those encountered in actual engines. Because the specimens a r e  not enclosed, 
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I their  temperature distributions can be  readily observed and strains can often be  meas- 
ured optically. The specimens can be moved out of the burner exhaust for  cooling, 
which allows the burner to operate at steady state, prolonging its life. 

mass  flows of 0.5 kilogram per  second and small  burners  with mass  flows less than 

, 

Two types of open-jet r igs  a r e  in operation at Lewis: large Mach 1 burners  with 

0.07 kilogram per  second. Three large and nine small  burner r igs  a r e  presently avail- 
able. One of the large r igs  uses  natural gas; all the remaining r ig s  use jet fuel. 

holder supports eight wedge specimens in front of the burner nozzle, inside clam-shell 
radiation shields. For  cooling, the specimen holder moves downward, positioning the 
specimens in front of the sonic cooling air s t ream. The three Lewis r igs  of this type are 
used for studies on oxidation, coating, cladding, and thermal fatigue. Two of the r ig s  
have provisions for salt injection for sulfidation studies. 

Oxidation tests. - Tests  have shown that ba re  alloy oxidation and coating degrada- 
tion occur at significantly higher ra tes  in the Mach 1 r igs  than in  cyclic oxidation fur-  
naces (refs. 23 and 29 to 31). For  example, figure 10 presents a comparison of the 
weight changes in aluminide coated B 1900 under the two test conditions. At 1090' C, 
cyclic furnace specimens showed a small  weight gain followed by a very gradual weight 
loss. The rig tests, however, produced an immediate, rapid weight loss. Coating con- 
sumption r a t e s  have been found to be 10 to 20 t imes higher in the burner rig. However, 
the same sequence of growth, consumption, and break up has been observed. This is 
discussed further in the appendix. 

Creep-rupture tests. - Burner heating has  been found to increase creep as well  as 
oxidation ra tes  and reduce rupture t imes (ref. 32). Figure ll(a) shows one of the Lewis 
burner  rigs for creep-rupture testing. It is a conventional lever-loaded creep machine 
fitted with a small  (0.07 kg/sec) jet-fueled burner. Specimens a r e  conventional 
6-millimeter-diameter, uniaxial test  bars.  The small  size of the burner requires  that 
auxiliary electrical resistance heating be used to keep the test section at a uniform tem- 
perature. The power leads can be seen in figure l l (b) .  A similar rig using a large 
Mach 1 burner does not require the auxiliary heating. 

Comparison of rupture lives in a burner r ig  and in a furnace is shown in figure l l ( c ) .  
Burner heating has drastically reduced the rupture t imes for  the same stress and tem- 
perature combinations. At 980' C the burner heated life is only 10 percent of the furnace 
life f o r  two turbine alloys, one of which was aluminide coated. At 1040' C only 5 percent 
of the furnace life was obtained. These data suggest that creep rates  a r e  10 to 20 times 
higher than those in the furnace tests, increases very s imilar  to those observed f o r  
oxidation. The two phenomena a r e  closely related, and studies a r e  underway to deter- 
mine the relationship. 

cyclic creep life. One part  of this method is the calculation of creep-rupture life as a 

A large Mach 1 burner r ig  is shown in figure 9 (ref. 29). A rotating specimen I 

I 

As explained previously, the Method of Life Fractions has  been used to calculate 



function of temperature and s t ress .  This is usually done by means of empirical formulas 
called time-temperature parameters.  When calculating the creep life of a component in 
a moving gas  environment, these parameters  should be corrected in accordance with 
data similar to that given in figure l l (c) .  When this is done, cyclic creep life in a tur- 
bine environment can be accurately calculated using the Method of Life Fractions. 

Thermal-fatigue tests. - Simulated turbine blades, both cooled and uncooled, a r e  
being tested in a burner rig to evaluate life-prediction methods for turbine components 
(ref. 32). The tes t  facility is shown in figure 12(a). A loading fixture has been added 
to a large burner (of the type shown in fig. 9(a)) to allow the application of simulated 
centrifugal loads. The entire loading fixture pivots to move the airfoil specimen be- 
tween heating and cooling positions. Cyclic heating and cooling in  this r ig produce high 
thermal s t resses  and leading-edge cracks similar to those found in turbine components. 

Specimen shape and typical data a r e  shown in figure 12(b). Cyclic life is shown as 
a function of the leading-edge temperature at steady state for coated and uncoated IN 100. 
Theoretical lives, calculated using THERMF1, a r e  also shown in the figure. Agreement 
between experiments and theory is good. The agreement verifies the computer code and 
i t s  applicability to turbine components. Studies a r e  now being carried out to include 
s t r e s s  concentrations such as film cooling holes. 

Hot Gas Tunnel 

High gas  pressure  is one aspect of the turbine environment that is lacking in  the 
open-jet burner tests. To include this factor, a fully automated, programmable, hot- 
gas  tunnel r ig has been constructed for thin-walled, cooled airfoils (ref. 2). Both the 
specimens and the environment represent a turbine component more closely than those 
in the open-jet rigs. Pressure  levels can b e  raised to 11 atmospheres - an important 
factor in sulfidation studies. The mass  flow ra te  is  approximately 1.0 to 2.2 kilograms 
per  second, which produces realistic heat fluxes through the airfoil walls.  Figure 13(a) 
presents a schematic view of this rig. Figure 13(b) shows a typical cooled, symmetrical 
airfoil specimen in the test  section. The tunnel is equipped with a fatigue machine ca- 
pable of applying steady loads of 130 kilonewtons and cyclic loads of *44 kilonewtons at 
frequencies up to 60 hertz. The combustor exhaust gases  can be cycled in temperature 
f rom 540' C to as high as 1650' C. Cooling air can be  heated to 650' C to simulate a 
compressor bleed condition. 

under various conditions of temperature, load, coolant flow, and hold time. These data 
wil l  b e  used for  the final evaluation of a unified life-prediction method before using the 
method to calculate the l ives of prototype turbine components. 

Life tests are now being conducted on aluminide coated IN  100 airfoil specimens 
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PHASE 111: APPLICATION OF PREDlCTlON METHODS TO TURBINE COMPONENTS 

High Temperature Turb ine Technology Project 

The third phase of the program is predicting the lives of prototype components 
tested in advanced r igs  and engines. This phase is one par t  of a major research pro- 
gram at Lewis - the High-Temperature Turbine Technology Project. The objective of this 
project is to develop advanced gas turbines with increased performance and reliability, 
compared with the best  of present-day turbines. The project includes research on 
cooled turbine heat transfer, aerodynamics, and life. Other technical areas involved are 
mission analysis, materials and fabrication, mechanical design, r ig  and engine opera- 
tions, instrumentation development, and data reduction. 

The turbines under investigation range in s ize  from relatively large ones, which 
would be applicable to supersonic cruise turbojets, to very small  turbines with a flow 
capacity of only 0. 5 to 1 kilogram per  second, which could be  used on small  aircraft .  
Intermediate sized turbines under investigation include those applicable to high-pressure 
cores  of engines for  military multimission aircraft  and advanced subsonic cruise com- 
mercial transports. Turbines for helicopter engines of about 1500 shaft horsepower are 
also included in  the project. 

tested in four facilities: a static cascade rig, a modified 575 research engine, a high- 
pressure - high-temperature turbine rig, and the Lewis propulsion systems laboratory. 

' 

In the th i rd  phase of the program, lives wil l  be predicted for  turbine components 

Static Cascade Rig 

A static cascade r ig  originally designed for heat-transfer studies (refs. 1, 2, and 33) 
is being modified fo r  a vane life testing program. This program wil l  provide the f i r s t  
comparison at Lewis between predicted and observed lives of actual cooled engine com- 
ponents. The cascade rig is shown in figure 14. It w a s  designed for continuous opera- 
tion at an average inlet gas  temperature of 1350' C and pressures  up to  11 atmospheres. 
It can be operated at temperatures up to 1650' C for short times. 

data are obtained from the central two vanes. The outer two vanes a r e  slave vanes, 
which act as flow channels and radiation shields. The tes t  and slave vanes have sepa- 
ra te  cooling air systems. This allows preheating of the tes t  vane cooling air to  about 
650' C to simulate compressor bleed air. The two slave vanes can also receive more 
cooling than the test  vanes, to ensure longer life. 

As shown in figure 14(b), the specimen pack contains four vanes of 575  size. Test  
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Modified 575 Research Engine 

Life studies on actual blades and vanes will  b e  conducted in the research engine 
shown in figure 15(a) (refs. 1, 2, and 33). Only the high-pressure spool of the basic 
575 engine is used. This modified engine can operate for long periods of time at an 
average turbine inlet temperature of 1350' C. A cross-sectional diagram of the  turbine 
test  section is shown in figure 15(b). The standard uncooled single-stage turbine of the 
575 high-pressure spool has been replaced with a single-stage air-cooled turbine. Five 
of the 72 vanes and five of the 76 blades a r e  test components. The remaining blades and 
vanes a r e  slave components provided with more cooling than the 10 test  pa r t s  to ensure 
longer life. Several special features are incorporated in the turbine section to make a 
versati le test  bed. These features include the following: 

(1) Independent metering of cooling air to the test and slave components from either 

(2) Individual replacement of all airfoils without removing the  turbine disk 
(3) Extensive instrumentation for gas  temperatures, gas pressures ,  and metal tem- 

Up to  this  time, the engine has been used exclusively for turbine cooling studies. A 

the compressor or  from an external air supply 

peratures  on both blades and vanes 

program of life tes t s  in this engine is now in its early stages. One of the goals of this 
program is to develop improved vanes and blades using life prediction methods verified 
by r ig  tests.  

High-pressure - High-Temperature Turb ine Test Rig 

The Lewis Research Center is now designing and building an advanced turbine test  
r ig  that wil l  operate a t  the high temperatures and pressures  expected in future engines 
(ref. 2). In the turbine test section of this facility, gas temperatures may reach 2000' C, 
and pressures  may be as high as 40 atmospheres. The facility wil l  consist of a combus- 
tor, a single-stage turbine, a water brake power absorber, an auxiliary compressor 
system with integral turbine drives, and the required service, control, and instrument 
systems. The turbine wil l  have a tip diameter of approximately 50 centimeters, a blade 
span and chord of about 4 centimeters, and a shaft speed of 17 600 rpm. The combustor, 
turbine disk, blades, and vanes wil l  all be replaceable in the facility. 

Propuls ion Systems Laboratory 

Performance testing of engines and components wi l l  be  conducted in the propulsion 
systems laboratory shown in figure - 16. Here large commercial and mili tary engines 
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can be operated under simulated altitude, speed, and temperature conditions. New de- 
signs to increase performance, minimize noise, and reduce pollution wi l l  be evaluated. 
Life predictions wi l l  be made for cri t ical  components to  improve the reliability of these 
test engines. 

CONCLUDING REMARKS 

This report has reviewed the turbine component life-prediction program at the NASA 
The program is composed of a wide variety of on-going studies Lewis Research Center. 

covering many aspects of materials research, environmental testing, and component 
development. It is divided into three general phases in various stages of completion. 

Much progress  has been made in the f i r s t  phase: the development of life-prediction 
methods through materials studies. The basic modes of failure such as fatigue, creep, 
and oxidation are sufficiently wel l  understood a t  this time to be described quantitatively. 
Computer codes a r e  being written to include these failure modes in a unified manner. 

A limited amount of progress  has been achieved in the second phase of the program: 
the evaluation of prediction methods through combustion r ig  studies. Material properties 
a r e  being measured in high-velocity gas atmospheres, and simulated turbine components 
are being tested in thermal fatigue. 

unified life-prediction method to prototype turbine components in  r igs  and engines. This 
is the area where increased effort would be of greatest  benefit. 
phase must involve program planners and specialists alike in mission analysis, mate- 
rials, component design, fabrication, test  operations, maintenance, and repair. 

Th,e third phase of the program is now in the planning stage: the application of a 

To be  successful, this 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, September 29, 1972, 
501 -2 1. 
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APPENDIX - MECHANISMS OF COATING FAILURE 

It has  been observed that coating failures are usually preceded by a certain sequence 
of changes in composition and structure (refs. 22 and 23). Figure 17 shows typical 
changes in the microstructure of a coated turbine alloy, caused by cyclic oxidation. The 
system shown in the figure is an aluminide coating deposited on a B 1900 substrate (a 
typical cast  nickel-base alloy). As shown in figure 17(a), the coating actually consists 
of four distinct layers  between the surface oxide and the B 1900 substrate. It has been 
determined that oxidation protection in this coating i s  obtained primarily from layer II, 
composed of nickel-monoaluminide, NiA1. If the NiAl layer is broken, rapid oxidation 
of the substrate begins. Thus, the thickness and integrity of the NiAl layer is crit ical  
to the oxidation resistance of coated turbine components. 

(1) a growth process  that thickens the layer at the II/III interface, through inward dif- 
fusion of aluminum and outward diffusion of nickel and (2) a consumption process that 
thins the layer at the I/II interface, through oxidation and depletion. 

The growth process  is generally dominant in  the ear ly  stages of exposure to high 
temperature. In figure 17(a), after 100 1-hour cycles at 1090' C, the NiAl layer is 
approximately 50 percent thicker than it w a s  at  the start of testing. The consumption 
process  then becomes dominant. In figure 17(b), layer 11 has become much thinner after 
400 1-hour cycles. Finally, after additional exposure, the NiAl layer breaks up (see 
fig. 17(c)), opening paths for the oxidation of the substrate. This layer breakup can be 
considered to be the start of a coating failure, as proposed by Grisaffe (ref. 31). 

in figure 18 for aluminide coated B 1900. Starting from an initial thickness of 43 mi- 
crometers,  the layer grows to a peak thickness that is strongly dependent on the expo- 
sure  temperature. The higher the temperature, the smaller the net amount of growth 
above the initial thickness. After reaching its peak thickness, the NiAl layer becomes 
thinner a t  a ra te  that is assumed to be constant for a constant temperature. The con- 
sumption rates shown in the figure were calculated using the Arrhenius equation: 

I Two simultaneous processes  combine to change the thickness of the NiAl layer: 
I 

I 

, 
l 

I The processes  of growth and consumption leading to breakup are shown graphically 

' 

- dh = Ae -Q/RT , 
dt 

% s  h c  hmZ, wn/hr 

where 

h thickness of NiAl layer, pm 

t exposure time, hr  

A curve-fit constant, pm/hr 
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Q activation energy, J/m ole 

R universal gas  constant, J/mole-K 

T exposure temperature, K 

thickness below which breakup occurs, approximately 30 pm 

peak layer thickness, pm 
hb 
hmax 

The activation energy Q was found to be approximately equal to that for  the diffusion 
of nickel in NiA1. 

The indicated breakup thickness of 30 micrometers is a preliminary value measured 
for NiAl. Once breakup occurs, consumption of the broken layer continues at an in- 
creasing rate, as is indicated b’y the dashed lines in figure 17. Similar thickness data 
have been reported fo r  aluminide coated WI-52, a cobalt-base alloy (ref. 22). 

shown i n  figures 17 and 18. With this concept the pure coating life could be calculated 
from its composition and a knowledge of the growth rates,  consumption rates,  and 
minimum unbroken layer thickness. 

mens, but at much higher rates. Similarities can be seen between the microstructures 
of a typical wedge-shaped specimen (fig. 19) and a typical furnace specimen (fig. 17) of 
the same alloy and coating. Figure 19 shows a NiAl layer that has grown in thickness 
after 100 1-hour cycles on the side of the wedge specimen in a lower temperature region. 
However, in  a hotter region near the leading edge (fig. 19(b)), the layer has become 
thinner and broken. On the leading edge itself, in the a rea  of severest  spalling, the pro- 
tective NiAl layer has  been completely consumed. Similar comparisons have been made 
between rig and furnace tes t s  of aluminide coated WI -52 (ref. 22). However, the differ- 
ences in rates were not as great as for the aluminide coated B 1900. It can be con- 
cluded, then, that the concept of layer breakup might also be used to predict coating life 
in a Mach 1 gas stream using increased ra te  constants. 

The concept of layer breakup is an attempt to quantitatively describe the processes 

The same sequence of structural  changes have been observed in burner rig speci- 
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(a) General view of rig. 

(b) Wedge specimens i n  holder. 

Figure 9. - High-velocity open-jet b u r n e r  r i g  for oxidation and thermal fatigue studies. 
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F igu re  16. - Propuls ion systems laboratory fo r  test ing large tu rbo fan  and  turbojet  engines. 
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Figure 17. - Changes in coating m ic ros t ruc tu re  d u r i n g  cyclic f u rnace  oxi- 
dation. Temperature, 1090° C; slow cooled h o u r l y  to 50' C. 
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Figure 17. - Changes in coating m ic ros t ruc tu re  d u r i n g  cyclic f u rnace  oxi- 
dation. Temperature, 1090° C; slow cooled h o u r l y  to 50' C. 
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